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Abstract

In this paper, we analyze dynamic behavior of a piezothermoelastic laminate considering the effect of damping due
to interlaminar shear and the effect of transverse shear. The analytical model is a rectangular laminate composed of
fiber-reinforced laminae and piezoelectric layers. The model is assumed to be a symmetric cross-ply laminate with all
egdes simply supported and to be subjected to mechanical, thermal and electrical loads varying arbitrarily with time.
Behavior of the laminate is analyzed based on the first-order shear deformation theory. The effect of damping due to
interlaminar shear is incorporated into our analysis by introducing the interlaminar shear stresses which satisfy the
Newton’s law of viscosity. Solutions of the following quantities are obtained: (1) natural frequencies of the laminate, (2)
weight functions for the deflection and rotations and (3) unsteady deflection due to loads varying arbitrarily with time.
Moreover, numerical examples of the solutions are shown to examine the effects of damping and transverse shear on
dynamic behavior of the laminate and how the voltage applied to the laminate decreases the deflection due to me-
chanical or thermal loads.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Recently smart structures have attracted much attention in engineering, medicine and other fields.
Piezoelectric materials are used as an important element of smart structures and are often attached to
structural laminates such as graphite/epoxy. The laminates composed of them have been used as devices for
vibration-control, shape-control and so forth in adaptive structures (Tzou and Anderson, 1992) and have
become to be used under severe mechanical and thermal environment. The laminate, which is called
piezothermoelastic laminate, was studied by many authors for static behavior with the aim of shape-control
(Wu and Tauchert, 1980a,b; Tauchert, 1992; Noda and Kimura, 1998; Ishihara and Noda, 2000).
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During operation such as vibration-control, piezothermoelastic laminates are often subjected to dy-
namically changing mechanical and thermal loads unavoidably and are also subjected to electrical load to
compensate the effect of those unavoidable loads. Therefore, dynamic behavior of piezothermoelastic
laminates has been analyzed by several authors. Shen and Kuang (1999) analyzed steady vibration of a
piezothermoelastic laminate due to harmonic excitation taking into account the effect of transverse shear.
In our previous paper (Ishihara and Noda, 2002), we studied transient dynamic behavior of a piezother-
moelastic laminate considering the effect of transverse shear under the first-order shear deformation theory
(FSDT).

Dynamic analysis aforementioned (Ishihara and Noda, 2002) does not take into account the effect of
damping while a laminate generally undergoes the effect. Damping changes such dynamic characters as the
natural frequency, transient behavior and so forth. In particular, the natural frequency is underestimated
by the analysis without regard to the effect of damping. Therefore, the analysis taking damping into ac-
count is important to estimate dynamic characters properly. Actually, Tang and Xu (1995) took damping
into account and obtained the response of a piezothermoelastic laminate based on the classical laminate
theory (CLT). In their analysis (Tang and Xu, 1995), they introduced damping terms proportional to
translation velocity into equations of motion of the laminate. Damping in laminates is considered to be
owing mainly to the existence of interlaminar layers which are infinitesimal in thickness but finite in
damping effect. Therefore, when the effect of the damping on dynamic behavior of piezothermoelastic
laminates is considered, it is more important to discuss the damping due to interlaminar shear than that
proportional to translation velocity.

Therefore, we study the effect of damping due to interlaminar shear on dynamic behavior of a
piezothermoelastic laminate taking into account the effect of transverse shear assuming the existence of
infinitesimal interlaminar layers. The analytical model is a rectangular laminate composed of fiber-rein-
forced laminae and piezoelectric layers. The model is assumed to be a symmetric cross-ply laminate with
all egdes simply supported. The laminate is unavoidably subjected to mechanical and thermal loads which
are dynamically changing and is subjected to electrical loads to compensate the effect of those un-
avoidable loads.

Behavior of the laminate is analyzed based on the FSDT. The effect of damping due to interlaminar shear
is incorporated into our analysis by introducing the interlaminar shear stresses which satisfy the Newton’s
law of viscosity, that is, the shear stresses which are proportional to velocity gradients in the infinitesimal
interlaminar layers. The equations of motion are expressed by deflection of the laminate and rotations of
the cross-sections. The deflection and rotations are expressed by double Fourier series. Laplace transform is
introduced to the equations of motion. As a result, the following quantities are obtained: (1) natural fre-
quencies of the laminate, (2) weight functions for the deflection and rotations and (3) transient deflection
due to loads varying dynamically with time.

Moreover, numerical examples of the solutions are shown to examine the effect of damping due to in-
terlaminar shear and the effect of transverse shear on dynamic behavior of the laminate and how the voltage
applied to the laminate decreases the deflection due to mechanical or thermal loads.

2. Analysis
2.1. Problem

The analytical model is shown in Fig. 1. The model is a rectangular laminate with dimension a X b x A
composed of N layers: two of N layers (z;_; <z <z, zp_1 <z < zp) exhibit piezoelectricity while other layers
do not. The laminate is a cross-ply laminate: all the layers exhibit 2 mm symmetry with respect to xy-plane
and the principal axes of anisotropy coincide with the axes of the Cartesian coordinate system (x, y,z). The
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Fig. 1. Analytical model.

layers are laminated symmetrically with respect to the central plane z = 0: the ith and (N — i + 1)th layers
are composed of the same material and have the same anisotropy with respect to the Cartesian coordinate
system (x,y,z). All edges of the laminate are simply supported.

The laminate is subjected to umsteady loads varying arbitrarily with time #: transverse load ¢(x,y,?);
temperature distribution Ty(x,y,¢) and Ty(x,y,?) on the upper surface (z = —4/2) and the lower sur-
face (z = h/2), respectively; electric potential V*(x,y,7) and V¥ (x,y,¢) on the upper surface (z = z_,) of
the kth layer and the lower surface (z = zy) of the k’th layer, respectively. The lower surface (z = z;) of
the kth layer and the upper surface (z =z, ;) of the £'th layer are both the level surfaces of electric
potential.

2.2. Analytical procedure

In order to take into account the effect of transverse shear, the analytical procedure is based on the
FSDT. The displacement components in x-, y- and z-directions are taken to be, respectively,

u=u"+zp, v=1"+z b w=n (1)

where the superscript 0 denotes the quantities at the central plane; and /. and /, denote rotations of the
cross-sections perpendicular to x- and y-axes, respectively. In order to take into account the effect of
damping due to shear, we introduce the external force (per unit area) t;; which acts on i-plane in j-direction
(i,j =x,y,z; i # j) and satisfies the Newton’s law of viscosity as

0 [ Ou;
Tij:tuij& (61,‘/)’ (2)

where u,, u, and u, denote u, v and w, respectively, and y; is referred to as viscosity.

We assume for the present that external force t;;, hence viscosity p;, is distributed throughout the
laminate. Then, referring to Fig. 2, the equations of motion incorporating the effect of damping due to
shear are derived as
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Fig. 2. Equilibrium of stresses and external forces in x-direction.
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where o;; and p denote stresses and mass density, respectively.
Moreover, we assume that the external force 7;;, hence viscosity p;;, occurs only in the infinitesimal in-

terlaminar layers described by z=1z (i=1,...,N — 1) as a consequence of the limit process where the
thickness of each interlaminar layer tends to zero. Then, viscosities can be expressed as

<

O)
N
=~

Z 5 lulV tuxy = luxz = :uy\r = :u_yz = 07 (4)

where 0(-) denotes the Dirac’s delta function and y; denotes the viscosity in infinitesimal interlaminar layer
z;. Substitution of Eqgs. (1) and (4) into Eq. (3); integration of the third equation of Eq. (3) for
—h/2 <z< h/2; integration of the first and second equations of Eq. (3) for —4/2 <z < h/2 with z multiplied
give equations of motion for the laminate as follows:

00, 00, o*w
ax "oy T4 F% -
oM, aM 62% oy, 6MU, 621p alpy ’
Ty 2Tl TRy O =lgs iy
where the definitions of Q., O,, M., M,, M,,, P, I and u are given by
/2 h/2
{QX? Qy} = /h/z{o-xzv Gyz} dZ7 {Mvavaxy} = / 2{6xx7 O-yy7 O-xy}Zdza (6)

12 N-1
(Pry= | (12pdz w=3 (7)
i=1



M. Ishihara, N. Noda | International Journal of Solids and Structures 40 (2003) 6077-6094 6081

Here, P and I are the coeflicients of translation and rotary inertia, respectively. Hereafter, we refer to u as
the damping coefficient of the laminate. The constitutive equations of piezothermoelasticity for the sym-
metrical cross-ply laminate are

O 0, 0O, O Exx 0 0 e E, A
Oy ¢ =10n On 0 Gy 0= |0 0 en|SE p—S A T
Oy 0 0 Ogl My 00 0 E, 0 , (8)
0z _ |Qu O )z 0 exn|[E
{sz}_[o @551{%&}_[@15 0 {Ey}

where ¢;; and y;; denote strains, E; denotes electric fields, T denotes temperature, Q.j, e; and J; denote elastic
stiffness coefficients, piezoelectric coefficients and stress—temperature coefficients all of which are reduced
and transformed (Jonnalagadda et al., 1994). From Eq. (1), strains are expressed as

0 0 0 0 0 v,
Sxx:ai‘f'zalpx, Syvzai Z&7 Vs :al ai_’_z alpx_i'_ﬁ
Ox Ox G)Y Oy Yy Ox dy  Ox )
= a—w + lﬁ T a_W + lp
yxz - ax X7 /yz - 6y y
Electric fields are expressed by electric potential @ as
o Rl o
Ex: 0 EV:__a Ez:__~ 10
Ox ’ dy Oz (10)

Substitution of Eq. (9) into Eq. (8); integration of the first equation of Eq. (8) for —4/2 <z< h/2 with z
multiplied; integration of the second equation of Eq. (8) for —/#/2 <z<h/2 give

W,
6)(,' T E
M, Dy D O ) M, + M;
My = D12 D22 O Ey - MyT +Mf 5
M,, 0 0 Des o, . % 0
dy  Ox
6w+ v
{Q}} _ [544 0 } )% U Qf (11)
O, 0 Sss a_W_pr oF ’
Ox
where the definitions of D;;, S;;, M, MyT, ME, MyE, OF and Qf are given as
h/2 h/2 - o
Dij = b2 QijZZdZ (ivj = 17276), {5447555} = /h/z {k§Q44ak12Q55}dZ’ (12)
MT h/2 /T-l ME h/2 e QE h/2 2<E
= A T2 dz, o= _31}Ezdz, { }:/ {1“}dz, 13
{Mf } /h/2 { A } : {Mf } /h/Z { €32 : Qf i €k (13)

where parameters £ and k, in Eq. (12) are introduced to take into account non-uniform shear strain
distribution through the plate thickness. By substituting Eq. (11) into Eq. (5), the equations of motion are
expressed by deflection and rotations as follows:
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As the laminate is simply-supported at all edges, we have
x=0,a; w=0, M, =0, y,=0 (15)
y=0b; w=0, M, =0, ¢,=0

We assume that the laminate is sufficiently thin, therefore, that the distributions of temperature and electric
potential are linear with respect to thickness direction as

T(xvyazvt):%[TN(xvyvt)+T0(xayvt)]+%[TN(xayvt)_To(xayat)] (_h/zézgh/z)a (16)

‘D(XJGZ’ t) = Vk(x7y> t)ZZ]c_i_ZZ (Zkfl <Z<Zk)
k k—1 ) (17)

D(x,y,z,t) = V¥ (x,y, I)ﬂ (zw_1 <z<zp)

2K — Zp -1

Moreover, we assume that g(x,v,1), To(x,y, ), Ty(x,y,1), V¥(x,y,t) and V¥ (x,y,t) are expressed by double
Fourier series as follows:

Z Gun(t) sina,x sin By, (18)

=1 n=1

q(x,y,t) =

o0
m

{Toe, 9,0, Ty (6, 9,03 =D > {Ton(t), Ty (1)} sin o, ¢ sin B, (19)
m=1 n=1
{V" (%0, 1), V¥ (x, v, t)} 25> {V,jn(z), V,,’;;(t)} sin g, sin By, (20)
m=1 n=1
where
mT nm
Ofm—77 ﬁn—7~ (21)

In order to satisfy Eq. (15), we assume that deflection and rotations are also expressed by double Fourier
series as follows:

w= i iwm,,(t) sin o, x sin 8,y
m:oénzolJ . (22)
Ve =22 Wy m(t) cosa,xsin By, ¥, = Z Zlﬁy mn(£) 810 0t x COS B,y

m=Iln=1 m=1n=1

Then, the equations of motion expressed by the Fourier coefficients of deflection and rotaions are obtained.
By substituting Egs. (10), (13), (16)—(22) into Eq. (14), we have
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MK, (1) + CXyun (£) + KX (1) = Py (1), (23)
where
Xoun (£) = {n (6) /1 W1 (1), W1 (O}
Ph 0 0 0 0 0 kiim  Kiomn ki
M= I/h 0 |, C= w/h 0 |, K, = koo mn k23 n
sym. I/h sym. w/h sym. k33 un

kit = (Ssso2, + S44ﬁi)h, ki mm = Sssttm, ki3 mm = Saaf,
kyyn = ditmn /By k33n = A2/, kozn = dizgn /B
dvim = D112 + Dééﬁi + 855, dyon = Desor2, + Dzzﬁi +Sus,  dizm = (D12 + Deg) 0,
P (8) = Gun(2) - {1,0,03" = {0, o Hyn () /11, B, L (1) / 1}
—(z +2e1)/ (2h) - [VE,() + V5 (0] - {0, @310, €8, }

—(zi —ze1)/(2h) - [VE,(6) + Vi (0)] - {(5150@ + éz4ﬁﬁ)haélsd»n,éz4/3n}T
{Hun (1), L (1)} = Z(Z —2)/ GI) [Ty (1) = Toun ()] - {41, 22}

i=1

Eq. (23) is solved by using the Laplace transform (Sneddon, 1972). By applying the transform for
variable ¢ to Eq. (23), we have

X (s) = (M 4+ 5C + K,,,) " - {p5,, (s) + sMX,,(0) + [MX,,,(0) 4 Cx,,,(0)]}, (25)

where the functions with superscript *x denote the Laplace transform of the functions without superscript
and s denotes the parameter of the Laplace transform. (s*M + sC —I—Kmn)fl, which means the transfer
function, has different expressions for the case with rotary inertia taken into account (I # 0) and for the
case with rotary inertia disregarded (I = 0). For the former case (I # 0), (s°M + sC + K,,,,,)f1 is expressed as

5 1 Dmn,ll (S) DmrLlZES; Dmn,l3gsg
(S M —+ sC -+ Km,,) Dmn,22 S Dmn,23 S )
(Ph)(l/h) Hz 1 [(S + Vimn Wi, mn) + (1 - yzzmn)wlzmn] Sym. Dm,,>33 (S)
(26)

where D, ;;(s) is given as

Dy ij(s) = Do un.ij($) + Dyn,ij(5)
Do 1 (s) = 1/h)’s* + (I/ 1) (kazmn + k33.n)8* + (ka2mnk33.n — k33 1)
Doun22(s) = (Ph)(I/h)s* + [(Ph)kss n + (1 /h)kty a5 + (Kit yunKss,n = ki )
Do 33(s) = (Ph)(I/h)s* + [(Ph)kaz o + (I / D)kt ) s* + (Kt mako o — KT )
Do yn12(s) = —[(I/1)k12.mns® + (k12mnk33.mn — K13 mnka3 mn)] 27)
Do,un13(8) = —[(I /1) k3 uns* + (ki3 ko2 — Kizmnkoz mm)]
Do mn23(8) = —[(Ph)kaz mns* + (ka3 mnk11 mn — K12.mmk13.mm)]
D11 (s) = (u/m)s2(1/h)s> + (u/h)s + (kaomn + k33,n)]
Dyiun22(8) = Dynn33(5) = (1t/h)s[(Ph)s* + kit un]
Dyn12(8) = —(1/P)k12mnS,  Dyumni3(8) = —(/h)ki3mnS,  Dymn23(s) =0
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and w,,, and y,;,, (i=1, 2, 3) denote the undamped natural frequencies and the damping factors, re-
spectively, which are determined by the iterative method to solve the following two sets of equations:

2 2 2
{(Ulmn7 wlmn? w3mn}

1 qw,mn Hw,mn Oto,mn + 275 Gv)mn - 2TE
—gawz,mw{l,l,l}—ZHT {cos( 3 >,cos( 3 ),cos( 3 >} (28)

and
1 1 1 Vl,mnwhmn
w%ﬁmn + w%,mn COg,mn + w%,mn w%ﬁmn + w%,mn yZ,man-,mn
w%,mnwgmn (’O;mnw%,mn wimnwgmn y3~mnw3«,m”
1
(/) ) 5 | s (s + ) + X
Al 77N 22.mn 33,mn T Mlmn
= (l;/—h) 21(/h) ' (Ph) - 4(V1Amnw1,mn)(Vzmnwlmn)(73,mnw3,mn) 1o,
1 0
AN TDIN/ T /L Dmn 0 Dmn 3 0
(29)
where
1
Au0mn = - . k ,mannA 0 +k ,mannA 0 +k ,manm 0
0, (Ph)([/h)z[ 11 ,11( ) 12 ,12( ) 13 ,13( )]
1 1 (/h)’
Aplmn = —Dmn,ll (O) + [Dmn,22(0) + Dmn,33(0)] + 7kll,mn
(1/h)* (Ph)(1/h) (Ph)(1/h)?
_4 |:(’yl,mnw1<,mﬂ) (’VZA,mnwz,m")w%,mn + (yZ,)nn wZ,mn) (y3,mnw3,m’1)w%ﬁmn + (y3¢mnw3,mn) (yl,mnwl,m")w%(mn}
! 1 (u/h)’
Aw2mn = 7777~ (kZZ,mn + k33,mn) + kll,mn +
o /h) (Ph) (1/h)’
74 [(Vlkmnwlﬁmn) (VZ,manJWl) + (yZ,mnwzﬂmn) (y3,mn Cl)3.m,,) + ('))3,mna)3,m") ('Vl,mnwl«,m”):|
1
qomn = gaiﬂ,mn — Aol
Yo.mn = Aw0,mn — gawl,mnawZ,mn + ﬁai’l”m
w,mn 2
Hw,mn = 00571 — i
\/ q?z)‘mn/27
(30)

Note that w, ,, and y, ,,, mean the undamped natural frequency and the damping factor for deflection and
that w;,,, and v, (i = 2, 3) mean those for rotations. For the case with rotary inertia disregarded (/ = 0),
(M + sC +K,,) " is expressed as
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1
(szMJrsCJer,,)_1 = Z .
(Ph)Dm'l.” (O)(l + r]mn) (r]l.mn + 1) (nl.mn — + 1) [(S + yOA,mnwO-m")z + (1 - ’V%,mn)(‘ug,mn}
wO,mn Cl)().,rrm

D,uii(s) Dpin(8) Dyis(s)
D:nn‘22 (S) D:nn‘23 (S) ) (3 1)

Sym. D;nn,}E (S)
where D), ..(s) is obtained by / = 0 in D, ;;(s). ®o,.» denotes the undamped natural frequency and g ..., M,

M. and 1n,,,, are the damping factors, all of which are determined by the iterative method to solve the
following equations:

1 1
2 - k mann 0 k mann 0 k mann O
OF un = (Ph)Dmn,u(O)[ 11, 1(0) + iz, 12(0) + k3, 13(0)]

1 ) ’
= ) h
nl,mnnlmn (1 + nmn) Dmn,ll (0) 0,mn (,I.L/ )

@0, mn k n k mn
711,,,,,,7121,,1,, 1 z,yoymn | | 0, ( 22, 33, )
= (u/h)
(1 +’7mn) Dmmll(o) _1 _1 D 0 D 0
1 1 nl,mn + n2,mn (Ph) 0 [ mn,22( ) + mn,33( )]
'/Imn = 1 : { k“‘m” (iu/h)z - [’71 mnn2.mn + 2’yOAmn('/Il,mn + 172Amn)]}
1 =+ nl,mnnlmn =+ 2?04mn(n1,mn + nZAmn) (Ph)Dmrhll (O) ’ ' '

(32)

Note that wg,, and y,,, mean the undamped natural frequency and the damping factor for deflection.
By substituting Eq. (26) or (31) into Eq. (25) and applying the inverse transform to Eq. (25), we obtain
solutions of transient deflection and rotations due to loads varying arbitrarily with time as

X (£) = /0 t B (TP (1 — 7) AT + &, ()MX,, (0) + g,,,, () [MX,, (0) + CX,n (0)], (33)

where g, () denotes the weight function. g,,(¢) has different expressions for the case with rotary inertia
taken into account (I # 0) and for the case with rotary inertia disregarded (/ = 0). For the case with rotary
inertia taken into account (/ # 0),

3 Dmnﬁll (Sj,mn) Dmn.lZ(Sj«,mn) DmnAIS(Sj,mn)
gmn (t) - Z Im esjAWt(Gj,mn + iI—Ijlmn) : Dmn,22 (Sj«,mn) DmnA23 (Sj,mn) 9 (34)

j=1
sym. DmnA33 (Sj,mn)
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and for the case with rotary inertia disregarded (/ = 0),

Dinn,l 1 (S0,mn) D;m,lz (Somn) Dl 13(50,mm)
D

/

gmn(t) =Im eso"mnt(GO‘mn + iHO,mn) : mn,22(s0<,m”) D;rm,23 (SO,"M)

/
sym. Dmn,33 (SO,W!H)

D ( @0, mn ) D wo,mn D wO,mn

mn 11\ T mn, 12| T mn, 13|
jmn njmn yljmn

2

W0, mn / W0,mn / COO,mn

+ z : €Xp - t I.I'-,m” ’ Dmn,22 - Dmn,23 -
=1 Njmn Nj,mn Nj,mn
@W0,mn

/ i
Sym. D mn,33 -
L njﬁmn ]

where

Sjmn = (_“))jﬁmn +1\/ 1- yjz',mn)wj,mn (.]: 0, 17273)

1 1
Gi-m" = . [(wlzmn 2mn) (a)izmn - a)z mn) - wizmn 5i '.mnéikmn]
’ \/ 1 - ylz,mnwtlmn { (Ph>([/h)2A’-j«,m"Aik«,m” ’ g ‘ " ’ :

+(Vi,mnwi,mn)1_[i,mn} (i,5,k=1,2,3; i# ], j#k, k#i)

1
I_]i mn — . a)2 - a)Z 5i mn + w2 - wZ (Si jmn 2 i.mn Di,mn (Si j,mn 5i mn
s (Ph) (I/h)zAl:/'.mnAl‘kimn ( imn j,mn) k, ( imn k,mn) ] 5 (y s s ) ] 5 k,

2
Aij-,m” = (wiz,mn - wjzmn) - 51’}3”‘" |:2(’yi,mnwi,mn)(wzz,mn - wjz',mn) - a)iz,mnéij‘mn (la] = 172’ 3)

5ij7mn = z(yiﬁmnwi,"m - Vj,nznwj~m”) (laJ: 1723 3)
1 1

5 A ! [1 - yO,mn(nl,mn + 712.mn) - (1 - 2V§?mn)1/]1,mnn2,mn]
(PR)Dyun11(0) /1 =75 yun @0.n (1 417,,,) <

1
H mn = Ve ZV M 12,mn = M 1mn +1 mn) 13
0 (Ph)Dmn,ll (O)wo,mn(l + nmn) Amn [ 0 L % ( L > )]

GO,mn =

1 Mo
Izlmn: : 1+ i,mn ‘mn_zq mn 17217271 i
’ (Ph)Dm'Lll (0)0)01,,,,,(1 + ’1mn) Mimn = Njmn A [ T (’7']7 Yo, )] ( / #])

Amn =1- 2y0,mn(’11,mn + nZ,mn) + (nl,mn + nl,mn)z

_2’71,mn172,mn(1 - 2y%mn) - 2y0,mn’71,mn’72mn(’71,mn + nZ,mn) + (nl,mnrllmn)z

(36)

Thus, transient deflection and rotations are expressed by the summation of the terms due to loads varying
dynamically with time and the terms due to the initial conditions. Moreover, the terms due to loads varying
dynamically with time are expressed by the convolution of the function representing the dynamic loads and

the weight function which is determined independently of the dynamical loads.
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The solution based on the CLT where the effect of transverse shear is disregarded are shown. In the CLT,
the rotations v, and v, are expressed by

ow ow
=g h=g (37)
As the equation of motion, the equation which is obtained by eliminating O, and O, in Eq. (5) is used.
Solution of transient deflection under the CLT is also solved in the same manner as that under the FSDT

and is obtained as

Z Z Wy (2) Sin o, x sin B,y (38)
m=1 n=1
and
mn ! . mn 0 i mn O mn 0
it (t) - / g(“mn (ﬁc)pc‘mn (t - T) dT + gc.,mn(t) c = ( ) 2y (t) ML‘W ( ) + CCW ( ) I (39)
h 0 h h h
where

1 Y . /
gc,mn (t) ja— e Ve mn@c.mnt sin < 1 — ngmnwcﬁmnt)
MC\/ 1 - Vg}mnwcimn

2 _ Kcﬁmn Cc

(Uc,mn - ]‘4C ) yc,mrl - 2 /—MCKCA’mn (40)
M, = (Ph) + (I/h)[(ho,)* + (hB,)*),  Ce= (u/h)[(ha)’ + (hB,)’]
Kemn = h[Dyyoik + Dzzﬂj + 2(Dy3 + 2Dgg )02 B2

1 /
Pean(t) = Qun(2) + o3 Hon(€) + Blun (1) + 5 (€319, + 852 8) (2 + 201) [V, () + V(1)

3. Numerical calculation

Some numerical calculation is carried out in order to examine the effect of damping due to interlaminar
shear and the effect of transverse shear on the dynamic behavior of the laminate and how the voltage
applied to the laminate decreases the deflection due to unavoidable thermal load.

We assume that the piezoelectric layers are of BaTiO; and other layers are of graphite/epoxy (GE).
Reduced material constants are given as follow:

for GE layer (Tauchert, 1992; Tang and Xu, 1995);
05, =182 GPa, (%5, =103 GPa, @5, =2.90 GPa
04 =287 GPa, 0% =717 GPa, O =7.17 GPa
X =688 x10° PaK™' 25 =1233x10° PaK™'
p¢ =1.580 x 103 kgm™*
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and for BaTiO; (which exhibits 6 mm symmetry) layer (Dunn, 1993; Wang and Yu, 2000);

O, =0, =120 GPa, (¥, =1362GPa, (), =% =440 GPa, () =42.0GPa

W =75=133x10°PaK ™',

ez =epn=-123Cm™>, es5=ey=114Cm"> , (42)
=1 =987x10° C°N"'m?2, 5 =132x10"° C*°N'm2

PP =5.700 x 10 kgm ™’

where 7}, denotes the permittivities of BaTiO;. Reduced and transformed material properties can be ob-
tained according to the work by Jonnalagadda et al. (1994). The damping coefficient of the laminate, y, is
considered to depend on the way to unite the laminae practically. Here we assume the non-dimensional
parameter as

— B 02 (43)
/Qflflpehél
otherwise stated. We assume that the square layers (a = b) are piled as {[BaTiO3:0°}/[GE:(90°/0°):]} sym.
(N =10, k=1, ¥ = 10) and that each layers has the same thickness. Parameters &; and &, in Eq. (12) are
taken to be unit.
Hereafter, we use quantities

— / 2 4
Qi‘mn - 1 - yl‘,mnwi‘mna 5i,mn - ))iymnwi,mn .
CLT / 2 CLT (1=0,1), (44)
Qi,mn = 1 - yc,mnwcam”’ 5i,mn = ’yc.mnwc,mn

where Q and 0 are referred to as the damped natural frequency and the decay rate, respectively, for de-
flection and it should be noted that subscripts i = 0 and 1 denote the results for the case with rotary inertia
disregarded (/ = 0) and for the case with rotary inertia taken into account (/ # 0), respectively, and that
superscript CLT denotes the results under CLT.

3.1. The effects of transverse shear and damping on the natural frequencies and the decay rates

Fig. 3 shows the variation of the ratio of the minimum damped natural frequency and the decay rate for
deflection based on the FSDT to those based on the CLT with the length-to-thickness ratio a/4 (referred to
as ‘LT ratio’) for u/+/ Q¢ p¢h* = 0.2 where the rotary inertia is disregarded. From Fig. 3, it is found that the

11 Qo,n
CLT
Qo,n
1
60.11
Qo,u 0.9 5
QCLT o
0,11
’ 0.8
80,11
CLT
60’“ 0.7
0.6
0.5

0 10 20 30 40 50
alh

Fig. 3. Variation of minimum damped natural frequency and decay rate with length-to-thickness ratio (u//0%,ph* = 0.2).
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Fig. 4. Variation of minimum damped natural frequencies and decay rates with damping coeffcient (a/h = 10).

effect of transverse shear on the minimum damped natural frequency and the decay rate gets more sig-
nificant as the LT ratio gets small. Moreover, it is found that the minimum natural frequency based on the
FSDT @y, is smaller than that based on the CLT QS and that the decay rate based on the FSDT & is
smaller than that based on the CLT &5 '

Fig. 4 shows the variation of the minimum damped natural frequencies and the decay rates for deflection
with the damping coefficient of the laminate under the FSDT. From Fig. 4, it is found that the minimum
natural frequencies decreases and the decay rate increases as the damping coefficient increases. Moreover,
significant difference between the minimum natural frequency with rotary inertia disregarded (£;) and
that with rotary inertia taken into account (£2; ;1) is not found. Also significant difference between the decay
rate with rotary inertia disregarded (J¢;;) and that with rotary inertia taken into account (J; ;) is not
found.

3.2. The effects of transverse shear and damping on transient deflection

The effects of transverse shear and damping on the transient deflection due to thermal load are inves-
tigated. Hereafter, the rotary inertia are assumed to be neglected (/ = 0). In this section, we consider that
the laminate is still at its undeformed state initially and that it is subjected to a sudden temperature change
and is kept at the temperature on the lower surface as an unavoidable thermal environment:

TN,ll(t) — T()All(t) = ToH(f), TN,m,,(l‘) — To,m,,([) =0 (m,n) 7& (1, 1)
VE () =V* () =0 for all (m,n) , (45)

mn mn

Gm:(t) =0 for all (m,n)

where H(¢) denotes the Heaviside unit function. Then, these loads cause w,,(¢) only for (m,n) = (1,1).

Fig. 5 shows the transient behavior of the thermal deflection at the center of the laminate under the
FSDT. From Fig. 5, it is found that the thermal deflection vibrates and decays and that it tends to the final
deflection, which agrees with the thermal deflection under the static analysis by us (Ishihara and Noda,
2000). Hereafter, the final deflection is denoted by (w). Moreover, it is found that the thermal deflection
decays more rapidly and the frequency gets smaller for the larger value of the damping coefficient, which
corresponds to the results in Fig. 4.
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Fig. 5. Transient deflection due to sudden temperature change (a/h = 10).

3.3. Control of thermal deflection by applied voltage

We treat control of thermal deflection by applying the electrical voltage to the piezoelectric layers. Let
Wuncontrol d€note the deflection due to unavoidable thermal load and weeciricat denote the deflection due to the
electrical voltage to compensate the effect of the thermal load. Then, the total deflection weouyo 18 €Xpressed
by

Weontrol = Wuncontrol T Welectrical (46)

As the first example, we assume that the laminate which is still at its undeformed state initially is sub-
jected to the sudden temperature change described by Eq. (45), that it reaches to the final deflection at ¢,
and that then the sustaining electrical voltage starts to be applied to the upper surface of the kth piezo-
electric layer as

i) = —VH(t 1), V() =0 (m,n) #(1,1) (7)
VE(1y=0 for all (m,n) '

Fig. 6 shows the corresponding transient behavior of deflection weon,o Where 7, 1s taken as infinity. From
Fig. 6, it is found that the thermal deflection is suppressed by the sustaining electrical voltage applied to the
piezoelectric layer and that the final deflection is linear with respect to the magnitude of the applied
electrical voltage.

As the second example, we assume that the laminate which is still at its undeformed state initially is
subjected to impulsive thermal load as

t

Tvn(£) = Toni () = ToS | ———e
=)= e = )

qmn(t) = 0 for all (m,n)

>, Ty (£) = Ton (1) =0 (m,m) # (1, 1)
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Fig. 6. Control of thermal deflection by sustaining electrical voltage (a/h = 10, u/\/ 0% p¢h* = 0.1).
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Fig. 7. Control of the thermal deflection due to impulsive thermal load by a pulse of electrical voltage (a/h = 10, u/+/Q5,ph* = 0.1
V/(Z‘;Toh/\/ Q€1‘|’711)1) =1).
and that then it is subjected to a pulse of electrical voltage during #, to t, (>t) as
W@ =VIH({t—n)-H(t=n), V,()=0 (mn)# (1) (49)
VE () = 0 for all (m,n)

on the upper surface of the kth piezoelectric layer. Fig. 7 shows the transient behavior of deflection Wyl
for some combinations of # and #. From Fig. 7, it is found that the deflection is suppressed for
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(t1,0)/\/peh?/ Q% = (5,10) and is increased for (#,%)/+/pch*/0%, = (5,20). Thus, the deflection due to
impusive thermal load is found to be suppressed by appropriate duration of the pulse of electrical voltage to
the piezoelectric layer. Next, we define the suppression rate R as

R 7M_ (50)

|Wun00mr01 |maximum

50
-\Rzé\

40

N e —
v pehz/Qlel 20-?2\\

0 T r 1t T

0 10 20 30 40 50
t

[ S
eg2 e
VPR / o
Fig. 8. Variation of the suppression rate with the initial time and the duration of the pulse of electrical voltage (a/h = 10,

P = 0.1, V(5 Toh /Oy = 1).
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Figs. 8 and 9 show the variation of the suppression rate with the initial time ¢ (=¢;) and the duration ¢,
(=t — t1) of the pulse of electrical voltage. From Fig. 8, it is found that, in order to suppress the maximum
deflecion (R < 1) using relatively large magnitude of the voltage (V' /(A{Toh/+\/ Q% 1;,) = 1), the initial time
must be earlier than some specific time (¢/+/p°h?/ 0%, < 43) and the duration must be within some period
depending on the initial time. From Fig. 9, it is found that, in order to suppress the maximum deflecion for
relatively small magnitude of the voltage (V/(A]Toh/\/ Q% n},) = 0.1), the initial time must be earlier than
some specific time and the duration can range wider than the case shown in Fig. 8. Moreover, from Fig. 9, it
is found that, for relatively small magnitude of the voltage, the pulse with the earlier initial time and the
longer duration is able to suppress the maximum deflection more.

4. Concluding remarks

We study dynamic behavior of a piezothermoelastic laminate considering the effect of damping due to
interlaminar shear and the effect of transverse shear and obtain the solution of transient response.
Moreover, from numerical calculation, the following remarks are found:

1. The effect of transverse shear on the minimum damped natural frequency and the decay rate gets more
significant as the length-to-thickness ratio decreases.

2. The minimum damped natural frequency decreases and the decay rate increases by the damping due to
interlaminar shear.

3. The final thermal deflection due to a sudden and sustaining temperature change can be suppressed by
applying sustaining electrical voltage to the piezoelectric actuator.

4. The transient thermal deflection due to impulsive thermal load can be suppressed by appropriate pulse of
electrical voltage to the piezoelectric actuator.

5. The maximum deflection due to impulsive thermal load can be suppressed more effectively by the pulse
of electrical voltage with relatively small magnitude, the earlier initial time and the longer duration.
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