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Abstract

In this paper, we analyze dynamic behavior of a piezothermoelastic laminate considering the effect of damping due

to interlaminar shear and the effect of transverse shear. The analytical model is a rectangular laminate composed of

fiber-reinforced laminae and piezoelectric layers. The model is assumed to be a symmetric cross-ply laminate with all

egdes simply supported and to be subjected to mechanical, thermal and electrical loads varying arbitrarily with time.

Behavior of the laminate is analyzed based on the first-order shear deformation theory. The effect of damping due to

interlaminar shear is incorporated into our analysis by introducing the interlaminar shear stresses which satisfy the

Newton�s law of viscosity. Solutions of the following quantities are obtained: (1) natural frequencies of the laminate, (2)

weight functions for the deflection and rotations and (3) unsteady deflection due to loads varying arbitrarily with time.

Moreover, numerical examples of the solutions are shown to examine the effects of damping and transverse shear on

dynamic behavior of the laminate and how the voltage applied to the laminate decreases the deflection due to me-

chanical or thermal loads.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Recently smart structures have attracted much attention in engineering, medicine and other fields.

Piezoelectric materials are used as an important element of smart structures and are often attached to

structural laminates such as graphite/epoxy. The laminates composed of them have been used as devices for

vibration-control, shape-control and so forth in adaptive structures (Tzou and Anderson, 1992) and have

become to be used under severe mechanical and thermal environment. The laminate, which is called

piezothermoelastic laminate, was studied by many authors for static behavior with the aim of shape-control
(Wu and Tauchert, 1980a,b; Tauchert, 1992; Noda and Kimura, 1998; Ishihara and Noda, 2000).
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During operation such as vibration-control, piezothermoelastic laminates are often subjected to dy-

namically changing mechanical and thermal loads unavoidably and are also subjected to electrical load to

compensate the effect of those unavoidable loads. Therefore, dynamic behavior of piezothermoelastic

laminates has been analyzed by several authors. Shen and Kuang (1999) analyzed steady vibration of a
piezothermoelastic laminate due to harmonic excitation taking into account the effect of transverse shear.

In our previous paper (Ishihara and Noda, 2002), we studied transient dynamic behavior of a piezother-

moelastic laminate considering the effect of transverse shear under the first-order shear deformation theory

(FSDT).

Dynamic analysis aforementioned (Ishihara and Noda, 2002) does not take into account the effect of

damping while a laminate generally undergoes the effect. Damping changes such dynamic characters as the

natural frequency, transient behavior and so forth. In particular, the natural frequency is underestimated

by the analysis without regard to the effect of damping. Therefore, the analysis taking damping into ac-
count is important to estimate dynamic characters properly. Actually, Tang and Xu (1995) took damping

into account and obtained the response of a piezothermoelastic laminate based on the classical laminate

theory (CLT). In their analysis (Tang and Xu, 1995), they introduced damping terms proportional to

translation velocity into equations of motion of the laminate. Damping in laminates is considered to be

owing mainly to the existence of interlaminar layers which are infinitesimal in thickness but finite in

damping effect. Therefore, when the effect of the damping on dynamic behavior of piezothermoelastic

laminates is considered, it is more important to discuss the damping due to interlaminar shear than that

proportional to translation velocity.
Therefore, we study the effect of damping due to interlaminar shear on dynamic behavior of a

piezothermoelastic laminate taking into account the effect of transverse shear assuming the existence of

infinitesimal interlaminar layers. The analytical model is a rectangular laminate composed of fiber-rein-

forced laminae and piezoelectric layers. The model is assumed to be a symmetric cross-ply laminate with

all egdes simply supported. The laminate is unavoidably subjected to mechanical and thermal loads which

are dynamically changing and is subjected to electrical loads to compensate the effect of those un-

avoidable loads.

Behavior of the laminate is analyzed based on the FSDT. The effect of damping due to interlaminar shear
is incorporated into our analysis by introducing the interlaminar shear stresses which satisfy the Newton�s
law of viscosity, that is, the shear stresses which are proportional to velocity gradients in the infinitesimal

interlaminar layers. The equations of motion are expressed by deflection of the laminate and rotations of

the cross-sections. The deflection and rotations are expressed by double Fourier series. Laplace transform is

introduced to the equations of motion. As a result, the following quantities are obtained: (1) natural fre-

quencies of the laminate, (2) weight functions for the deflection and rotations and (3) transient deflection

due to loads varying dynamically with time.

Moreover, numerical examples of the solutions are shown to examine the effect of damping due to in-
terlaminar shear and the effect of transverse shear on dynamic behavior of the laminate and how the voltage

applied to the laminate decreases the deflection due to mechanical or thermal loads.
2. Analysis

2.1. Problem

The analytical model is shown in Fig. 1. The model is a rectangular laminate with dimension a� b� h
composed of N layers: two of N layers (zk�1 6 z6 zk, zk0�1 6 z6 zk0 ) exhibit piezoelectricity while other layers

do not. The laminate is a cross-ply laminate: all the layers exhibit 2 mm symmetry with respect to xy-plane
and the principal axes of anisotropy coincide with the axes of the Cartesian coordinate system ðx; y; zÞ. The



Fig. 1. Analytical model.
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layers are laminated symmetrically with respect to the central plane z ¼ 0: the ith and (N � iþ 1)th layers

are composed of the same material and have the same anisotropy with respect to the Cartesian coordinate

system ðx; y; zÞ. All edges of the laminate are simply supported.

The laminate is subjected to unsteady loads varying arbitrarily with time t: transverse load qðx; y; tÞ;
temperature distribution T0ðx; y; tÞ and TN ðx; y; tÞ on the upper surface (z ¼ �h=2) and the lower sur-

face (z ¼ h=2), respectively; electric potential V kðx; y; tÞ and V k0 ðx; y; tÞ on the upper surface (z ¼ zk�1) of
the kth layer and the lower surface (z ¼ zk0) of the k0th layer, respectively. The lower surface (z ¼ zk) of
the kth layer and the upper surface (z ¼ zk0�1) of the k0th layer are both the level surfaces of electric

potential.
2.2. Analytical procedure

In order to take into account the effect of transverse shear, the analytical procedure is based on the
FSDT. The displacement components in x-, y- and z-directions are taken to be, respectively,
u ¼ u0 þ zwx; v ¼ v0 þ zwy ; w ¼ w0; ð1Þ
where the superscript 0 denotes the quantities at the central plane; and wx and wy denote rotations of the

cross-sections perpendicular to x- and y-axes, respectively. In order to take into account the effect of

damping due to shear, we introduce the external force (per unit area) sij which acts on i-plane in j-direction
(i; j ¼ x; y; z; i 6¼ j) and satisfies the Newton�s law of viscosity as
sij ¼ lij
o

oi
ouj
ot

� �
; ð2Þ
where ux, uy and uz denote u, v and w, respectively, and lij is referred to as viscosity.

We assume for the present that external force sij, hence viscosity lij, is distributed throughout the

laminate. Then, referring to Fig. 2, the equations of motion incorporating the effect of damping due to
shear are derived as



Fig. 2. Equilibrium of stresses and external forces in x-direction.
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where rij and q denote stresses and mass density, respectively.
Moreover, we assume that the external force sij, hence viscosity lij, occurs only in the infinitesimal in-

terlaminar layers described by z ¼ zi (i ¼ 1; . . . ;N � 1) as a consequence of the limit process where the

thickness of each interlaminar layer tends to zero. Then, viscosities can be expressed as
lzx ¼ lzy �
XN�1

i¼1

dðz� ziÞli; lxy ¼ lxz ¼ lyx ¼ lyz ¼ 0; ð4Þ
where dð�Þ denotes the Dirac�s delta function and li denotes the viscosity in infinitesimal interlaminar layer

zi. Substitution of Eqs. (1) and (4) into Eq. (3); integration of the third equation of Eq. (3) for

�h=26 z6 h=2; integration of the first and second equations of Eq. (3) for �h=26 z6 h=2 with z multiplied

give equations of motion for the laminate as follows:
oQx

ox
þ oQy

oy
þ q ¼ P

o2w
ot2

oMx

ox
þ oMxy

oy
� Qx ¼ I

o2wx

ot2
þ l

owx

ot
;

oMxy

ox
þ oMy

oy
� Qy ¼ I

o2wy

ot2
þ l

owy

ot

9>>>=
>>>;
; ð5Þ
where the definitions of Qx, Qy , Mx, My , Mxy , P , I and l are given by
fQx;Qyg ¼
Z h=2

�h=2
frxz; ryzgdz; fMx;My ;Mxyg ¼

Z h=2

�h=2
frxx; ryy ; rxygzdz; ð6Þ

fP ; Ig ¼
Z h=2

�h=2
f1; z2gqdz; l ¼

XN�1

i¼1

li: ð7Þ
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Here, P and I are the coefficients of translation and rotary inertia, respectively. Hereafter, we refer to l as

the damping coefficient of the laminate. The constitutive equations of piezothermoelasticity for the sym-

metrical cross-ply laminate are
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where eij and cij denote strains, Ei denotes electric fields, T denotes temperature, Qij, �eeij and �kki denote elastic
stiffness coefficients, piezoelectric coefficients and stress–temperature coefficients all of which are reduced

and transformed (Jonnalagadda et al., 1994). From Eq. (1), strains are expressed as
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Electric fields are expressed by electric potential U as
Ex ¼ � oU
ox

; Ey ¼ � oU
oy

; Ez ¼ � oU
oz

: ð10Þ
Substitution of Eq. (9) into Eq. (8); integration of the first equation of Eq. (8) for �h=26 z6 h=2 with z
multiplied; integration of the second equation of Eq. (8) for �h=26 z6 h=2 give
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where the definitions of Dij, Sij, MT
x , M

T
y , M

E
x , M

E
y , Q

E
x and QE

y are given as
Dij ¼
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�h=2
Qijz
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dz; ð12Þ
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where parameters k1 and k2 in Eq. (12) are introduced to take into account non-uniform shear strain
distribution through the plate thickness. By substituting Eq. (11) into Eq. (5), the equations of motion are

expressed by deflection and rotations as follows:
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ð14Þ
As the laminate is simply-supported at all edges, we have
x ¼ 0; a; w ¼ 0; Mx ¼ 0; wy ¼ 0

y ¼ 0; b; w ¼ 0; My ¼ 0; wx ¼ 0

�
: ð15Þ
We assume that the laminate is sufficiently thin, therefore, that the distributions of temperature and electric

potential are linear with respect to thickness direction as
T ðx; y; z; tÞ ¼ 1

2
½TN ðx; y; tÞ þ T0ðx; y; tÞ� þ

z
h
½TNðx; y; tÞ � T0ðx; y; tÞ� ð�h=26 z6 h=2Þ; ð16Þ

Uðx; y; z; tÞ ¼ V kðx; y; tÞ zk � z
zk � zk�1

ðzk�1 6 z6 zkÞ

Uðx; y; z; tÞ ¼ V k0 ðx; y; tÞ z� zk0�1
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9>=
>;: ð17Þ
Moreover, we assume that qðx; y; tÞ, T0ðx; y; tÞ, TNðx; y; tÞ, V kðx; y; tÞ and V k0 ðx; y; tÞ are expressed by double

Fourier series as follows:
qðx; y; tÞ ¼
X1
m¼1

X1
n¼1

qmnðtÞ sin amx sin bny; ð18Þ

fT0ðx; y; tÞ; TN ðx; y; tÞg ¼
X1
m¼1

X1
n¼1

fT0;mnðtÞ; TN ;mnðtÞg sin amx sin bny; ð19Þ

V kðx; y; tÞ; V k0 ðx; y; tÞ
n o

¼
X1
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V k
mnðtÞ; V k0

mnðtÞ
n o

sin amx sin bny; ð20Þ
where
am ¼ mp
a

; bn ¼
np
b
: ð21Þ
In order to satisfy Eq. (15), we assume that deflection and rotations are also expressed by double Fourier

series as follows:
w ¼
P1
m¼1

P1
n¼1

wmnðtÞ sin amx sin bny

wx ¼
P1
m¼1

P1
n¼1

wx;mnðtÞ cos amx sin bny; wy ¼
P1
m¼1

P1
n¼1

wy;mnðtÞ sin amx cos bny

9>>=
>>;: ð22Þ
Then, the equations of motion expressed by the Fourier coefficients of deflection and rotaions are obtained.

By substituting Eqs. (10), (13), (16)–(22) into Eq. (14), we have
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M€xxmnðtÞ þ C _xxmnðtÞ þ KmnxmnðtÞ ¼ pmnðtÞ; ð23Þ
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: ð24Þ
Eq. (23) is solved by using the Laplace transform (Sneddon, 1972). By applying the transform for

variable t to Eq. (23), we have
x�
mnðsÞ ¼ ðs2Mþ sCþ KmnÞ�1 � fp�mnðsÞ þ sMxmnð0Þ þ ½M _xxmnð0Þ þ Cxmnð0Þ�g; ð25Þ
where the functions with superscript � denote the Laplace transform of the functions without superscript �
and s denotes the parameter of the Laplace transform. ðs2Mþ sCþ KmnÞ�1

, which means the transfer

function, has different expressions for the case with rotary inertia taken into account (I 6¼ 0) and for the

case with rotary inertia disregarded (I ¼ 0). For the former case (I 6¼ 0), ðs2Mþ sCþ KmnÞ�1
is expressed as
ðs2Mþ sCþKmnÞ�1 ¼ 1

ðPhÞðI=hÞ2
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where Dmn;ijðsÞ is given as
Dmn;ijðsÞ ¼ D0;mn;ijðsÞ þ Dl;mn;ijðsÞ
D0;mn;11ðsÞ ¼ ðI=hÞ2s4 þ ðI=hÞðk22;mn þ k33;mnÞs2 þ ðk22;mnk33;mn � k223;mnÞ
D0;mn;22ðsÞ ¼ ðPhÞðI=hÞs4 þ ½ðPhÞk33;mn þ ðI=hÞk11;mn�s2 þ ðk11;mnk33;mn � k213;mnÞ
D0;mn;33ðsÞ ¼ ðPhÞðI=hÞs4 þ ½ðPhÞk22;mn þ ðI=hÞk11;mn�s2 þ ðk11;mnk22;mn � k212;mnÞ
D0;mn;12ðsÞ ¼ �½ðI=hÞk12;mns2 þ ðk12;mnk33;mn � k13;mnk23;mnÞ�
D0;mn;13ðsÞ ¼ �½ðI=hÞk13;mns2 þ ðk13;mnk22;mn � k12;mnk23;mnÞ�
D0;mn;23ðsÞ ¼ �½ðPhÞk23;mns2 þ ðk23;mnk11;mn � k12;mnk13;mnÞ�
Dl;mn;11ðsÞ ¼ ðl=hÞs½2ðI=hÞs2 þ ðl=hÞsþ ðk22;mn þ k33;mnÞ�
Dl;mn;22ðsÞ ¼ Dl;mn;33ðsÞ ¼ ðl=hÞs½ðPhÞs2 þ k11;mn�
Dl;mn;12ðsÞ ¼ �ðl=hÞk12;mns; Dl;mn;13ðsÞ ¼ �ðl=hÞk13;mns; Dl;mn;23ðsÞ ¼ 0

9>>>>>>>>>>>>>>>>>>>>>>=
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ð27Þ
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and xi;mn and ci;mn (i ¼ 1, 2, 3) denote the undamped natural frequencies and the damping factors, re-

spectively, which are determined by the iterative method to solve the following two sets of equations:
x2
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ðl=hÞ2

ðI=hÞ2

�4
h
ðc1;mnx1;mnÞðc2;mnx2;mnÞþ ðc2;mnx2;mnÞðc3;mnx3;mnÞþ ðc3;mnx3;mnÞðc1;mnx1;mnÞ

i
qx;mn ¼

1

3
a2x2;mn � ax1;mn

rx;mn ¼ ax0;mn �
1

3
ax1;mnax2;mn þ

2

27
a2x2;mn

hx;mn ¼ cos�1 � rx;mn=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q3x;mn=27

q
0
B@

1
CA

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

:

ð30Þ
Note that x1;mn and c1;mn mean the undamped natural frequency and the damping factor for deflection and
that xi;mn and ci;mn (i ¼ 2, 3) mean those for rotations. For the case with rotary inertia disregarded (I ¼ 0),

ðs2Mþ sCþ KmnÞ�1
is expressed as
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ðs2Mþ sCþKmnÞ�1 ¼ 1

ðPhÞDmn;11ð0Þð1þ gmnÞ g1;mn
s

x0;mn
þ 1

� �
g2;mn

s
x0;mn

þ 1

� �
½ðsþ c0;mnx0;mnÞ2 þ ð1� c20;mnÞx2

0;mn�

�

D0
mn;11ðsÞ D0

mn;12ðsÞ D0
mn;13ðsÞ

D0
mn;22ðsÞ D0

mn;23ðsÞ

sym: D0
mn;33ðsÞ

2
666664

3
777775; ð31Þ
where D0
mn;ijðsÞ is obtained by I ¼ 0 in Dmn;ijðsÞ. x0;mn denotes the undamped natural frequency and c0;mn, gmn,

g1;mn and g2;mn are the damping factors, all of which are determined by the iterative method to solve the

following equations:
x2
0;mn ¼

1

ð1þ gmnÞ
1

ðPhÞDmn;11ð0Þ
½k11;mnDmn;11ð0Þ þ k12;mnDmn;12ð0Þ þ k13;mnDmn;13ð0Þ�

g1;mng2;mn ¼
1

ð1þ gmnÞ
1

Dmn;11ð0Þ
x2

0;mnðl=hÞ
2

g1;mng2;mn 1

1 1

2
4

3
5 2c0;mn

g1;mn þ g2;mn

8<
:

9=
;¼ 1

ð1þ gmnÞ
1

Dmn;11ð0Þ
ðl=hÞ

x0;mnðk22;mn þ k33;mnÞ

1

ðPhÞ
1

x0;mn
½Dmn;22ð0Þ þDmn;33ð0Þ�

8>><
>>:

9>>=
>>;

gmn ¼
1

1þ g1;mng2;mn þ 2c0;mnðg1;mn þ g2;mnÞ
� k11;mn

ðPhÞDmn;11ð0Þ
ðl=hÞ2 � ½g1;mng2;mn þ 2c0;mnðg1;mn þ g2;mnÞ�

� �

9>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>;

:

ð32Þ
Note that x0;mn and c0;mn mean the undamped natural frequency and the damping factor for deflection.

By substituting Eq. (26) or (31) into Eq. (25) and applying the inverse transform to Eq. (25), we obtain

solutions of transient deflection and rotations due to loads varying arbitrarily with time as
xmnðtÞ ¼
Z t

0

gmnðsÞpmnðt � sÞdsþ _ggmnðtÞMxmnð0Þ þ gmnðtÞ½M _xxmnð0Þ þ Cxmnð0Þ�; ð33Þ
where gmnðtÞ denotes the weight function. gmnðtÞ has different expressions for the case with rotary inertia

taken into account (I 6¼ 0) and for the case with rotary inertia disregarded (I ¼ 0). For the case with rotary

inertia taken into account (I 6¼ 0),
gmnðtÞ ¼
X3
j¼1

Im esj;mntðGj;mn

8>><
>>: þ iHj;mnÞ �

Dmn;11ðsj;mnÞ Dmn;12ðsj;mnÞ Dmn;13ðsj;mnÞ

Dmn;22ðsj;mnÞ Dmn;23ðsj;mnÞ

sym: Dmn;33ðsj;mnÞ

2
664

3
775
9>>=
>>;; ð34Þ
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and for the case with rotary inertia disregarded (I ¼ 0),
gmnðtÞ ¼ Im es0;mntðG0;mn

8><
>: þ iH0;mnÞ �

D0
mn;11ðs0;mnÞ D0

mn;12ðs0;mnÞ D0
mn;13ðs0;mnÞ

D0
mn;22ðs0;mnÞ D0

mn;23ðs0;mnÞ
sym: D0

mn;33ðs0;mnÞ

2
64

3
75
9>=
>;

þ
X2
j¼1

exp

 
� x0;mn

gj;mn
t

!
Ij;mn �

D0
mn;11 � x0;mn

gj;mn


 �
D0

mn;12 � x0;mn

gj;mn

 !
D0

mn;13 � x0;mn

gj;mn

 !

D0
mn;22 � x0;mn

gj;mn

 !
D0

mn;23 � x0;mn

gj;mn

 !

sym: D0
mn;33 � x0;mn

gj;mn

 !

2
66666666664

3
77777777775
;

ð35Þ

where
sj;mn ¼ � cj;mnþ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2j;mn

q
 �
xj;mn ðj¼ 0;1;2;3Þ

Gi;mn ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� c2i;mn
q

xi;mn

� 1

ðPhÞðI=hÞ2Dij;mnDik;mn

½ðx2
i;mn�x2

j;mnÞðx2
i;mn�x2

k;mnÞ�x2
i;mndij;mndik;mn�

(

þðci;mnxi;mnÞHi;mn

)
ði;j;k¼ 1;2;3; i 6¼ j; j 6¼ k; k 6¼ iÞ

Hi;mn ¼
1

ðPhÞðI=hÞ2Dij;mnDik;mn

� ðx2
i;mn�x2

j;mnÞdik;mnþðx2
i;mn�x2

k;mnÞdij;mn�2ðci;mnxi;mnÞdij;mndik;mn
h i

ði;j;k¼ 1;2;3; i 6¼ j; j 6¼ k; k 6¼ iÞ

Dij;mn ¼ x2
i;mn�x2

j;mn


 �2
�dij;mn 2ðci;mnxi;mnÞðx2

i;mn�x2
j;mnÞ�x2

i;mndij;mn
h i

ði;j¼ 1;2;3Þ

dij;mn ¼ 2ðci;mnxi;mn� cj;mnxj;mnÞ ði;j¼ 1;2;3Þ

G0;mn ¼
1

ðPhÞDmn;11ð0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c20;mn

q
x0;mnð1þgmnÞ

1

Dmn
� ½1� c0;mnðg1;mnþg2;mnÞ�ð1�2c20;mnÞg1;mng2;mn�

H0;mn ¼
1

ðPhÞDmn;11ð0Þx0;mnð1þgmnÞ
1

Dmn
½2c0;mng1;mng2;mn�ðg1;mnþg2;mnÞ�;

Ii;mn ¼
1

ðPhÞDmn;11ð0Þx0;mnð1þgmnÞ
g2i;mn

gi;mn�gj;mn

1

Dmn
½1þgj;mnðgj;mn�2c0;mnÞ� ði;j¼ 1;2; i 6¼ jÞ

Dmn ¼ 1�2c0;mnðg1;mnþg2;mnÞþðg1;mnþg2;mnÞ
2

�2g1;mng2;mnð1�2c20;mnÞ�2c0;mng1;mng2;mnðg1;mnþg2;mnÞþðg1;mng2;mnÞ
2

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

:

ð36Þ

Thus, transient deflection and rotations are expressed by the summation of the terms due to loads varying

dynamically with time and the terms due to the initial conditions. Moreover, the terms due to loads varying

dynamically with time are expressed by the convolution of the function representing the dynamic loads and
the weight function which is determined independently of the dynamical loads.
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The solution based on the CLT where the effect of transverse shear is disregarded are shown. In the CLT,

the rotations wx and wy are expressed by
wx ¼ � ow
ox

; wy ¼ � ow
oy

: ð37Þ
As the equation of motion, the equation which is obtained by eliminating Qx and Qy in Eq. (5) is used.

Solution of transient deflection under the CLT is also solved in the same manner as that under the FSDT
and is obtained as
w ¼
X1
m¼1

X1
n¼1

wmnðtÞ sin amx sin bny ð38Þ
and
wmnðtÞ
h

¼
Z t

0

gc;mnðsÞpc;mnðt � sÞdsþ _ggc;mnðtÞMc
wmnð0Þ

h
þ gc;mnðtÞ Mc

_wwmnð0Þ
h

"
þ Cc

wmnð0Þ
h

#
; ð39Þ
where
gc;mnðtÞ ¼
1

Mc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2c;mn

q
xc;mn

e�cc;mnxc;mnt sin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2c;mn

q
xc;mnt


 �

x2
c;mn ¼

Kc;mn

Mc
; cc;mn ¼

Cc

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
McKc;mn

p
Mc ¼ ðPhÞ þ ðI=hÞ½ðhamÞ2 þ ðhbnÞ

2�; Cc ¼ ðl=hÞ½ðhamÞ2 þ ðhbnÞ
2�

Kc;mn ¼ h½D11a4m þ D22b
4
n þ 2ðD12 þ 2D66Þa2mb

2
n�

pc;mnðtÞ ¼ qmnðtÞ þ a2mHmnðtÞ þ b2
nImnðtÞ þ

1

2
ð�ee31a2m þ �ee32b

2
nÞðzk þ zk�1Þ½V k

mnðtÞ þ V k0

mnðtÞ�

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

: ð40Þ
3. Numerical calculation

Some numerical calculation is carried out in order to examine the effect of damping due to interlaminar
shear and the effect of transverse shear on the dynamic behavior of the laminate and how the voltage

applied to the laminate decreases the deflection due to unavoidable thermal load.

We assume that the piezoelectric layers are of BaTiO3 and other layers are of graphite/epoxy (GE).

Reduced material constants are given as follow:

for GE layer (Tauchert, 1992; Tang and Xu, 1995);
Qe
11 ¼ 182 GPa; Qe

22 ¼ 10:3 GPa; Qe
12 ¼ 2:90 GPa

Qe
44 ¼ 2:87 GPa; Qe

55 ¼ 7:17 GPa; Qe
66 ¼ 7:17 GPa

ke1 ¼ 68:8� 103 PaK�1; ke2 ¼ 233� 103 PaK�1

qe ¼ 1:580� 103 kgm�3

9>>>>>=
>>>>>;
; ð41Þ
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and for BaTiO3 (which exhibits 6 mm symmetry) layer (Dunn, 1993; Wang and Yu, 2000);
Fi
Qp
11 ¼ Qp

22 ¼ 120 GPa; Qp
12 ¼ 36:2 GPa; Qp

44 ¼ Qp
55 ¼ 44:0 GPa; Qp

66 ¼ 42:0 GPa

kp1 ¼ kp2 ¼ 1:33� 106 PaK�1;
e31 ¼ e32 ¼ �12:3 Cm�2; e15 ¼ e24 ¼ 11:4 Cm�2

gp11 ¼ gp22 ¼ 9:87� 10�9 C2N�1m�2; gp33 ¼ 13:2� 10�9 C2N�1m�2

qp ¼ 5:700� 103 kgm�3

9>>>>=
>>>>;
; ð42Þ
where gpij denotes the permittivities of BaTiO3. Reduced and transformed material properties can be ob-

tained according to the work by Jonnalagadda et al. (1994). The damping coefficient of the laminate, l, is
considered to depend on the way to unite the laminae practically. Here we assume the non-dimensional

parameter as
lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qe

11q
eh4

p ¼ 0:2 ð43Þ
otherwise stated. We assume that the square layers (a ¼ b) are piled as {[BaTiO3:0�]/[GE:(90�/0�)2]}sym:

(N ¼ 10, k ¼ 1, k0 ¼ 10) and that each layers has the same thickness. Parameters k1 and k2 in Eq. (12) are

taken to be unit.

Hereafter, we use quantities
Xi;mn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2i;mn

q
xi;mn; di;mn ¼ ci;mnxi;mn

XCLT
i;mn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2c;mn

q
xc;mn; dCLTi;mn ¼ cc;mnxc;mn

9=
; ði ¼ 0; 1Þ; ð44Þ
where X and d are referred to as the damped natural frequency and the decay rate, respectively, for de-

flection and it should be noted that subscripts i ¼ 0 and 1 denote the results for the case with rotary inertia
disregarded (I ¼ 0) and for the case with rotary inertia taken into account (I 6¼ 0), respectively, and that

superscript CLT denotes the results under CLT.

3.1. The effects of transverse shear and damping on the natural frequencies and the decay rates

Fig. 3 shows the variation of the ratio of the minimum damped natural frequency and the decay rate for

deflection based on the FSDT to those based on the CLT with the length-to-thickness ratio a=h (referred to

as �LT ratio�) for l=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qe

11q
eh4

p
¼ 0:2 where the rotary inertia is disregarded. From Fig. 3, it is found that the
g. 3. Variation of minimum damped natural frequency and decay rate with length-to-thickness ratio ðl=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qe

11q
eh4

p
¼ 0:2Þ.



Fig. 4. Variation of minimum damped natural frequencies and decay rates with damping coeffcient (a=h ¼ 10).
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effect of transverse shear on the minimum damped natural frequency and the decay rate gets more sig-

nificant as the LT ratio gets small. Moreover, it is found that the minimum natural frequency based on the
FSDT X0;11 is smaller than that based on the CLT XCLT

0;11 and that the decay rate based on the FSDT d0;11 is
smaller than that based on the CLT dCLT0;11 .

Fig. 4 shows the variation of the minimum damped natural frequencies and the decay rates for deflection

with the damping coefficient of the laminate under the FSDT. From Fig. 4, it is found that the minimum

natural frequencies decreases and the decay rate increases as the damping coefficient increases. Moreover,

significant difference between the minimum natural frequency with rotary inertia disregarded (X0;11) and

that with rotary inertia taken into account (X1;11) is not found. Also significant difference between the decay

rate with rotary inertia disregarded (d0;11) and that with rotary inertia taken into account (d1;11) is not
found.
3.2. The effects of transverse shear and damping on transient deflection

The effects of transverse shear and damping on the transient deflection due to thermal load are inves-

tigated. Hereafter, the rotary inertia are assumed to be neglected (I ¼ 0). In this section, we consider that

the laminate is still at its undeformed state initially and that it is subjected to a sudden temperature change

and is kept at the temperature on the lower surface as an unavoidable thermal environment:
TN ;11ðtÞ � T0;11ðtÞ ¼ T0HðtÞ; TN ;mnðtÞ � T0;mnðtÞ ¼ 0 ðm; nÞ 6¼ ð1; 1Þ
V k
mnðtÞ ¼ V k0

mnðtÞ ¼ 0 for all ðm; nÞ
qmnðtÞ ¼ 0 for all ðm; nÞ

9>=
>;; ð45Þ
where HðtÞ denotes the Heaviside unit function. Then, these loads cause wmnðtÞ only for ðm; nÞ ¼ ð1; 1Þ.
Fig. 5 shows the transient behavior of the thermal deflection at the center of the laminate under the

FSDT. From Fig. 5, it is found that the thermal deflection vibrates and decays and that it tends to the final

deflection, which agrees with the thermal deflection under the static analysis by us (Ishihara and Noda,

2000). Hereafter, the final deflection is denoted by hwi. Moreover, it is found that the thermal deflection

decays more rapidly and the frequency gets smaller for the larger value of the damping coefficient, which
corresponds to the results in Fig. 4.



Fig. 5. Transient deflection due to sudden temperature change (a=h ¼ 10).
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3.3. Control of thermal deflection by applied voltage

We treat control of thermal deflection by applying the electrical voltage to the piezoelectric layers. Let

wuncontrol denote the deflection due to unavoidable thermal load and welectrical denote the deflection due to the
electrical voltage to compensate the effect of the thermal load. Then, the total deflection wcontrol is expressed

by
wcontrol ¼ wuncontrol þ welectrical: ð46Þ
As the first example, we assume that the laminate which is still at its undeformed state initially is sub-

jected to the sudden temperature change described by Eq. (45), that it reaches to the final deflection at t1
and that then the sustaining electrical voltage starts to be applied to the upper surface of the kth piezo-
electric layer as
V k
11ðtÞ ¼ �VHðt � t1Þ; V k

mnðtÞ ¼ 0 ðm; nÞ 6¼ ð1; 1Þ

V k0
mnðtÞ ¼ 0 for all ðm; nÞ

)
: ð47Þ
Fig. 6 shows the corresponding transient behavior of deflection wcontrol where t1 is taken as infinity. From

Fig. 6, it is found that the thermal deflection is suppressed by the sustaining electrical voltage applied to the

piezoelectric layer and that the final deflection is linear with respect to the magnitude of the applied

electrical voltage.

As the second example, we assume that the laminate which is still at its undeformed state initially is

subjected to impulsive thermal load as
TN ;11ðtÞ � T0;11ðtÞ ¼ T0d
tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qeh2=Qe
11

p
 !

; TN ;mnðtÞ � T0;mnðtÞ ¼ 0 ðm; nÞ 6¼ ð1; 1Þ
9>=
>;; ð48Þ
qmnðtÞ ¼ 0 for all ðm; nÞ



Fig. 7. Control of the thermal deflection due to impulsive thermal load by a pulse of electrical voltage (a=h ¼ 10, l=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qe

11q
eh4

p
¼ 0:1,

V =ðke1T0h=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Qe

11g
p
11

p
Þ ¼ 1).

Fig. 6. Control of thermal deflection by sustaining electrical voltage (a=h ¼ 10, l=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qe

11q
eh4

p
¼ 0:1).
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and that then it is subjected to a pulse of electrical voltage during t1 to t2 (>t1) as
V k
11ðtÞ ¼ V ½Hðt � t1Þ � Hðt � t2Þ�; V k

mnðtÞ ¼ 0 ðm; nÞ 6¼ ð1; 1Þ
V k0
mnðtÞ ¼ 0 for all ðm; nÞ

)
ð49Þ
on the upper surface of the kth piezoelectric layer. Fig. 7 shows the transient behavior of deflection wcontrol

for some combinations of t1 and t2. From Fig. 7, it is found that the deflection is suppressed for
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ðt1; t2Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qeh2=Qe

11

p
¼ ð5; 10Þ and is increased for ðt1; t2Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qeh2=Qe

11

p
¼ ð5; 20Þ. Thus, the deflection due to

impusive thermal load is found to be suppressed by appropriate duration of the pulse of electrical voltage to

the piezoelectric layer. Next, we define the suppression rate R as
Fig. 8

l=
ffiffiffi
Q

p

Fig. 9

l=
ffiffiffi
Q

p

R ¼ jwcontroljmaximum

jwuncontroljmaximum

: ð50Þ
. Variation of the suppression rate with the initial time and the duration of the pulse of electrical voltage (a=h ¼ 10,ffiffiffiffiffiffiffiffiffiffiffiffiffi
e
11q

eh4 ¼ 0:1, V =ðke1T0h=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Qe

11g
p
11

p
Þ ¼ 1).

. Variation of the suppression rate with the initial time and the duration of the pulse of electrical voltage (a=h ¼ 10,ffiffiffiffiffiffiffiffiffiffiffiffiffi
e
11q

eh4 ¼ 0:1, V =ðke1T0h=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Qe

11g
p
11

p
Þ ¼ 0:1).



M. Ishihara, N. Noda / International Journal of Solids and Structures 40 (2003) 6077–6094 6093
Figs. 8 and 9 show the variation of the suppression rate with the initial time ti (¼ t1) and the duration td
(¼ t2 � t1) of the pulse of electrical voltage. From Fig. 8, it is found that, in order to suppress the maximum

deflecion (R < 1) using relatively large magnitude of the voltage ðV =ðke1T0h=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Qe

11g
p
11

p
Þ ¼ 1Þ, the initial time

must be earlier than some specific time ðti=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qeh2=Qe

11

p
< 43Þ and the duration must be within some period

depending on the initial time. From Fig. 9, it is found that, in order to suppress the maximum deflecion for

relatively small magnitude of the voltage ðV =ðke1T0h=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Qe

11g
p
11

p
Þ ¼ 0:1Þ, the initial time must be earlier than

some specific time and the duration can range wider than the case shown in Fig. 8. Moreover, from Fig. 9, it

is found that, for relatively small magnitude of the voltage, the pulse with the earlier initial time and the

longer duration is able to suppress the maximum deflection more.
4. Concluding remarks

We study dynamic behavior of a piezothermoelastic laminate considering the effect of damping due to

interlaminar shear and the effect of transverse shear and obtain the solution of transient response.

Moreover, from numerical calculation, the following remarks are found:

1. The effect of transverse shear on the minimum damped natural frequency and the decay rate gets more

significant as the length-to-thickness ratio decreases.

2. The minimum damped natural frequency decreases and the decay rate increases by the damping due to

interlaminar shear.

3. The final thermal deflection due to a sudden and sustaining temperature change can be suppressed by

applying sustaining electrical voltage to the piezoelectric actuator.

4. The transient thermal deflection due to impulsive thermal load can be suppressed by appropriate pulse of
electrical voltage to the piezoelectric actuator.

5. The maximum deflection due to impulsive thermal load can be suppressed more effectively by the pulse

of electrical voltage with relatively small magnitude, the earlier initial time and the longer duration.
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